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1 Introduction

1.1 Overview of Topics

1.2 Prerequisites

These notes assume a good knowledge of multivariable calculus, basic linear algebra, and point-set topology. To
fully appreciate the motivations behind this material, it would be helpful to understand basic differential geometry
in Euclidean space (i.e. regular curves and surfaces, curvature, tangent spaces). The notation and definitions we use
in these notes follow Do Carmo’s Riemannian Geometry. As per this text, the term differentiable is taken to mean
smooth.

2 Differentiable Manifolds

2.1 Basic Definitions

The first step in our generalization of differential geometry in Euclidean space is to take an arbitrary set that locally
“looks” like Euclidean space with a differentiable structure. This motivates our definition of a differentiable manifold,
which can be viewed as a generalization of the regular surface in R3.

1



Definition 2.1. A differemtiable manifold of dimension n is a set M and a family of injective mappings xα : Uα →M
where each Uα is an open subset of Rn and the following properties hold:

•
⋃
α xα(Uα) = M . This means that the images of the open sets Uα cover the set M .

• For any pair α and β where intersection W := xα(Uα) ∩ xβ(Uβ) is nonempty, the sets x−1α (W ) and x−1β (W )

are both open and the function x−1β ◦ xα : x−1α (W )→ x−1β (W ) is differentiable. This is illustrated in Figure 1.

• The family {(xα, Uα)} is maximal.

The maximal family {(xα, Uα)} associated with M is called a differentiable structure. This differentiable structure
induces a topology on M , namely that a set S in M is open if x−1α (S) is open in Rn for all α.

An n-dimensional manifold M may be referred to by the name Mn as short-hand. Since we do not deal with
product manifolds in these notes, this notation does not introduce any ambiguity.

Figure 1: Differentiability Condition

Given a manifold M with differentiable structure, it is natural for us to define the notion of a differentiable
function f : Mn

1 →Mm
2 . Intuitively, a function f is differentiable if rewriting it in terms of any parametrizations of

M1 and M2 in open subsets U1 ⊂ Rn and U2 ⊂ Rm produces a differentiable function from U1 to U2.

Definition 2.2. Let Mn
1 and Mm

2 be differentiable manifolds. Then a function f : Mn
1 → Mm

2 is differentiable at
p ∈ M1 if for any parametrization y : V ⊂ Rm → M2 at f(p), there exists a parametrization x : U ⊂ Rn → M1

at p such that f(x(U)) ⊂ y(V ) such that the function y−1 ◦ f ◦ x : U → Rm is differentiable at x−1(p). Figure 2
illustrates this definition.

Figure 2: Showing Differentiability of Function between Manifolds

The next properties of regular surfaces that we seek to generalize are the notions of a tangent vector and tangent
space at a point on a manifold M . In Euclidean space, the tangent vector of a point on a regular surface is defined
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to be the derivative of a curve in the surface passing through the point of interest. Tangent vectors are thus vectors
in the ambient space R3 and the tangent plane is a 2-dimensional subspace.

Arbitrary differentiable manifolds do not necessarily have an ambient space in which tangent vectors can be
defined, so we must come up with another way to define them. Note that for any v = (v1, .., vn) ∈ Rn, we can define
a map that takes a real-valued function on Rn and outputs a real value, namely the directional derivative in the
direction v. More specifically, we take a function α : (−ε, ε)→ Rn such that α′(0) = v and get

vf =
d(f ◦ α)

dt

∣∣∣
t=0

=

n∑
i=1

vi
∂f

∂xi

∣∣∣
t=0

Thus each v is associated with a unique map taking functions to their directional derivatives in the direction of
v. This suggests that we can define tangent vectors on a manifold as a function on differentiable functions on M , a
formulation that does not depend on M being embedded in an ambient space.

Definition 2.3. Let M be a differentiable manifold, p ∈ M , and α : (−ε, ε) → M be a curve such that α(0) = p.
Let D denote the set of real-valued functions that are differentiable at p. Then the following function α′(0) : D → R
is a tangent vector at the point p:

α′(0)f =
d(f ◦ α)

dt

∣∣∣
t=0

The set of such functions TpM is called the tangent plane at point p. It is an n-dimensional vector space.

It turns out that if we pick a local parametrization x in a neighborhood of the point p, there exists a natural
basis for the tangent space. Let f ∈ D, p a point in M , and α : (−ε, ε) → M such that α(0) = p. Furthermore,
let q = x−1(p) ∈ Rn. Then in terms of the parametrization x, we write f ◦ x = f(x1, ..., xn) and x−1 ◦ α(t) =
(x1(t), ..., xn(t)). Then f ◦ α(t) = (f ◦ x) ◦ (x−1 ◦ α)(t) = f(x1(t), ..., xn(t)). We thus compute the function α′(0) to
be

α′(0)f =
d(f ◦ α)

dt

∣∣∣
t=0

=
d

dt
f(x1(t), ..., xn(t))

∣∣∣
t=0

=

n∑
i=1

x′i(0)
∂f

∂xi

=

(
n∑
i=1

x′i(0)

(
∂

∂xi

))
f,

where each ∂
∂xi

is the tangent vector at p of the coordinate curve t 7→ x(0, ..., t, ...0). Thus
{

∂
∂xi

}n
i=1

is a basis for

TpM .
Now that we have a notion of tangent vectors and tangent spaces, we can define the differential of a differentiable

function from Mn
1 to Mm

2 . As in the case of regular surfaces in R3, the differential at a point is a linear map between
tangent spaces.

Definition 2.4. Let Mn
1 and Mm

2 be differentiable manifolds and f a differentiable function from M1 to M2. Let
p ∈M1 and α : (−ε, ε)→M1 such that α(0) = p. Let v = α′(0) and β(t) = f ◦ α(t). We define the differential of f
at point p as dfp(v) = β′(0). dfp is a linear map from TpM1 to Tf(p)M2 whose definition only depends on the input
vector v and not the specific curve α.

2.2 Vector Fields

Every differentiable n-manifold M has associated with it another differentiable 2n-manifold TM that is constructed
by “gluing” the tangent plane to every point of M . Within the scope of these notes, this new manifold is useful to
us only in the context of defining vector fields, but it has a wealth of nice properties, such as being orientable even
if M is not.

Definition 2.5. Let M denote a differentiable n-manifold. We define the tangent bundle TM to be the set
{(p, v) : p ∈M,v ∈ TpM}. The tangent bundle is a 2n-dimensional differentiable manifold with a differentiable
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structure {(yα, Uα × Rn)} where

yα(x1, ...x1, u1, ..., un) =

(
xα(x1, ..., xn),

n∑
i=1

ui
∂

∂xi

)

with
{

∂
∂xi

}
describing the basis of each TpM with respect to parametrization xα.

Definition 2.6. A vector field X on differentiable manifold M is a function that assigns a tangent vector from
TpM to each point p ∈ M . It can be described as a function from M to TM . X is differentiable if the mapping
X : M → TM is.

There are 2 kinds of operations that can be done with a vector field X and differentiable function f : M → R.
One is scalar multiplication of X by the value of f at each point. This is denoted as fX : M → TM . A second
kind of operation that can be done is to create a new function Xf : M → R in which f is mapped to its directional
derivative in the direction of X at each point. This is denoted as Xf .

Thus a vector field on M can be viewed as an operator on the space of differentiable real-valued functions on
M , but the composition of these operators does not necessarily produce another field. There is a way, however, to
combine 2 vector fields to provide another.

Theorem 2.7. Let M be a differentiable manifold and X,Y be differentiable vector fields. Then XY − Y X is a
differentiable vector field called the Lie bracket denoted by [X,Y ]. The Lie bracket satisfies the following properties:

• [X,Y ] = −[Y,X]

• [aX + bY, Z] = a[X,Z] + b[Y,Z]

• [fX + gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X

Definition 2.8. Let Mn be a differentiable manifold and c : I →M be a differentiable curve on M , where I is some
interval in R. A vector field on c is a function that assigns to each point c(t) an element of Tc(t)M . This vector field
is differentiable if for every differential function f on M , the map t 7→ V (t)f is differentiable over I. The vector field
dc(d/dt) is called the velocity field of c.

3 Adding Geometric Structure

3.1 Motivation

Now that we have developed a way to describe abstract spaces with local Euclidean structure, we are now ready
to define new structures with which geometry can be done. The basic tools needed to do geometry are rulers and
protractors, that is, tools used to compute length and angle. In Euclidean space, the inner product (or dot product)
provides a way to do both. More specifically, for any two vectors u, v ∈ Rn:

cos(θ) =
〈u, v〉
‖u‖‖v‖

, d(u, v) = ‖u− v‖

where ‖u‖ = 〈u, u〉1/2. Naturally, our next step is to introduce the notion of an inner product to differentiable
manifolds.

3.2 The Riemannian Metric

Definition 3.1. Let Mn be a differentiable manifold. A Riemannian metric is an association of an inner product
〈 , 〉p to each point p ∈ M that varies differentiably. To illustrate what this means, we pick some p ∈ M and a
local parametrization x : U → M containing p. Then for all i, j ∈ {1, ..., n}, ∂

∂xi
(x(q)) = dxq(0, ...1, ...0) ∈ Tx(q)M1

and 〈 ∂∂xi
(x(q)), ∂

∂xi
(x(q))〉x(q) is a differentiable function from U to R. A differentiable manifold with a Riemannian

metric is called a Riemannian manifold.
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For a specific choice of parametrization x : U ⊂ Rn → M in the neighborhood of some p ∈ M , we can express
the inner product 〈 , 〉p in this neighborhood as a matrix. Let aij denote 〈 ∂∂xi

, ∂
∂xj
〉p. Then for any v, w ∈ TpM ,

v =
∑n
i=1 v

i ∂
∂xi

and w =
∑n
j=1 w

j ∂
∂xj

, where vi, wj ∈ R. Then

〈v, w〉p = 〈
n∑
i=1

vi
∂

∂xi
,

n∑
j=1

wj
∂

∂xj
〉p

=

n∑
i=1

vi
n∑
j=1

wj〈 ∂
∂xi

,
∂

∂xj
〉p

= (v′)TAw′

where v′, w′ are column vectors of coefficients vi, wj and A is a matrix such that Aij = aij . Note that since the inner
product is symmetric and positive definite, so is the matrix A.

The simplest example of a Riemannian manifold is Rn with the standard inner product. At every point p ∈ Rn,
for basis vectors ei and ej of TpRn = Rn, 〈ei, ej〉 = δji , where δji denotes the Kronecker delta function, which is 1 if
i = j and 0 otherwise. In matrix form, this metric corresponds to the identity matrix. The metric is constant over
the entire space and thus trivially differentiable.

4 Connections

4.1 A Brief Interlude

One common phenomenon in mathematics is that in an effort to generalize concepts, what is a theorem in the less
abstract case then becomes part of the definition in the generalized case. Take for example the notion of angles
between vectors. In R2 and R3, the formula for the angle between 2 vectors u, v is given by

cos(θ) =
〈u, v〉
‖u‖‖v‖

This is a theorem that can be proved using basic Euclidean geometry and the Law of Cosines. In other words, we
had a pre-existing physical notion of what an angle is and had to prove that the angle between vectors could be
computed by the above formula. In an abstract inner product space, however, we do not have a physical notion of
what an angle. Thus we define the notion of an angle between vectors to be that which is computed by the formula
that was proven in R2 and R3, replacing the inner product in Rn with that provided by the inner product space.

A similar technique is used to define a family directional derivative operators on vector fields on differentiable
manifolds. These are called affine connections. It turns out that when we impose additional constraints to connections
on Riemannian manifolds, we obtain a unique affine connection.

4.2 Affine Connections

Before we define affine connections, we first discuss the notion of directional derivatives in Euclidean space and
generalize this definition to directional derivatives on vector fields.

Definition 4.1. Let f : Rn → Rm be a differentiable function. Then the directional derivative in the direction of
vector v is

∇vf(x) = lim
t→0

f(x+ tv)− f(x)

t

∇vf is thus also a function from Rn to Rm.

This definition can be extended to 2 differentiable vector fields X and Y in Rn, where the directional derivative
of one vector field at a point is calculated in the direction of the other vector field at that same point.

Definition 4.2. Let X and Y be differentiable vector fields from Rn to Rn. Then the directional derivative of Y in
the direction of X at point p is

(∇XY )(p) = lim
t→0

Y (p+ tX(p))− Y (p)

t

∇XY is thus also a vector field from Rn to Rn.
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Thus ∇ can be viewed as an operator that takes 2 vector fields and produces a new one: ∇(X,Y ) = ∇XY . This
operator satisfies a variety of familiar properties.

Theorem 4.3. Let X denote the set of differentiable vector fields from Rn to Rn, X,Y , and Z be elements of X,
and f, g denote differentiable functions from Rn to R. Furthermore, let ∇ : X×X→ X denote the operator discussed
earlier. Then the following properties hold:

• (Linearity in direction) ∇(fX + gY, Z) = f∇(X,Z) + g∇(Y,Z)

• (Linearity in vector field) ∇(X,Y + Z) = ∇(X,Y ) +∇(Y, Z)

• (Product rule) ∇(X, fY ) = f∇(X,Y ) + (Xf)Y

Our limit definition of a directional derivative operator on vector fields contains operations that work in Euclidean
space but do not immediately generalize to differentiable manifolds. The term p + tX(p) makes sense in Rn since
Rn is an affine space, meaning you can add vectors to points to get new points. On a manifold, adding a vector
from TpM to p is not well-defined. Y (p+ tX(p))− Y (p) makes sense in Rn since the tangent space at every point is
identical. On a manifold however, addition of vectors from distinct tangent spaces TpM and TqM is not well-defined.

Thus, our strategy is to introduce a directional derivative operator on abstract manifolds by merely making the
properties proven in Theorem 4.3 part of the definition.

Definition 4.4. Let M be a differentiable manifold and X(M) the set of differentiable vector fields on M . Let
X,Y, Z ∈ X(M) and f, g be differentiable real-valued functions on M . ∇ : X(M)×X(M)→ X(M), which notationally
can be expressed as ∇(X,Y ) or ∇XY , is an affine connection if it satisfies the following properties:

• ∇(fX + gY, Z) = f∇(X,Z) + g∇(Y,Z)

• ∇(X,Y + Z) = ∇(X,Y ) +∇(Y,Z)

• ∇(X, fY ) = f∇(X,Y ) + (Xf)Y

As we will now see, a choice of affine connection provides a unique method to calculate the derivative of a vector
field along a curve satisfying the expected properties of differentiation.

Theorem 4.5. Let M be a differentiable manifold with affine connection ∇, c : I → M a differentiable curve on
M , and V a vector field defined along c. Then there exists a unique vector field DV

dt along c, called the covariant
derivative of V along c, that satisfies the following properties:

• D
dt (V +W ) = DV

dt + DW
dt

• D
dt (fV ) = df

dtV + f DVdt

• If V is the restriction of some vector field Y defined on M to the curve c, i.e. V (t) = Y (c(t)), then DV
dt =

∇dc/dtY .

We thus have a notion of differentiating vector fields along curves even though the tangent space at every point
on the curve is possibly distinct. Thus the affine connection provides a way to differentiate vector fields along a curve
“connecting” distinct tangent spaces. With the notion of a covariant derivative, we can discuss the notion of parallel
vector fields.

Definition 4.6. Let M be a differentiable manifold with affine connection ∇, and c : I → M be a differentiable
curve. Then a vector field V along c is parallel if DV

dt = 0 over I.

Figure 3 shows an example of a parallel vector field along a curve in R2.

4.3 The Riemannian Connection

Though the affine connection is a useful step towards defining directional differentiation on Riemannian manifolds,
the fact that there is not a single canonical choice of connection on differentiable manifolds means that we must
impose additional constraints that have to do with the Riemannian metric.

Definition 4.7. Let M be a differentiable manifold with connection ∇ and Riemannian metric 〈 , 〉. ∇ is compatible
with metric 〈 , 〉 if for any differentiable curve c and pair of parallel vector fields P, P ′ along c, 〈P, P ′〉 is constant.
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Figure 3: Parallel Vector Field

The intuition behind this condition is that it is equivalent to the statement that the connection agrees with the
product rule on the inner product.

Theorem 4.8. Let M be a differentiable manifold with affine connection ∇ and Riemannian metric 〈 , 〉. The
following statements are equivalent.

(a) ∇ is compatible with metric 〈 , 〉.

(b) For any differentiable curve c and differentiable vector fields V and W defined along c, d
dt 〈V,W 〉 = 〈DVdt ,W 〉+

〈V, DWdt 〉.

(c) For all X,Y, Z ∈ X(M), X〈Y,Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

Definition 4.9. An affine connection∇ on a differentiable manifold M is said to be symmetric if for all X,Y ∈ X(M),
∇XY −∇YX = [X,Y ].

We now show that there is a unique choice of connection that is both symmetric and in agreement with the
Riemannian metric.

Theorem 4.10 (Fundamental Theorem of Riemannian Geometry). let M be a Riemannian manifold with Rie-
mannian metric 〈 , 〉. Then there exists a unique affine connection, called the Levi-Civita connection, that is both
symmetric and in agreement with the metric.

Proof. We first suppose that an affine connection ∇ exists satisfying the 2 conditions. Then for any X,Y, Z ∈ X(M),
the following equations hold since ∇ agrees with the metric:

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉

Y 〈Z,X〉 = 〈∇Y Z,X〉+ 〈Z,∇YX〉

Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉

We add the first 2 equations and subtract the last to get:

X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉+ 〈∇Y Z,X〉+ 〈Z,∇YX〉 − 〈∇ZX,Y 〉 − 〈X,∇ZY 〉
= (〈∇XZ, Y 〉 − 〈∇ZX,Y 〉) + (〈∇Y Z,X〉 − 〈∇ZY,X〉)+

(〈∇XY, Z〉 − 〈∇YX,Z〉) + (〈∇YX,Z〉+ 〈Z,∇YX〉)
= 〈[X,Z], Y 〉+ 〈[Y, Z], X〉+ 〈[X,Y ], Z〉+ 2〈Z,∇YX〉 (by symmetry of ∇)

This equation can be rewritten as

〈Z,∇YX〉 =
1

2
(X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈[X,Z], Y 〉 − 〈[Y,Z], X〉 − 〈[X,Y ], Z〉)

This equation shows that the connection, if it exists, is unique, since the choice of Z is arbitrary. We prove existence
by just defining ∇ to satisfy the equation.
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5 Summary

In these notes, we developed the idea of a differentiable manifold to generalize the idea of regular surfaces to abstract
manifolds. We then developed the tools to measure lengths and angles on these manifolds with the Riemannian
metric. Finally, we explored the properties of directional differentiation in Rn, used these properties to define such
an operation (i.e., the affine connection) on differentiable manifolds, and concluded by showing that a unique such
operation exists that agrees with the Riemannian metric on Riemannian manifolds. The structures outlined in these
notes can then be used to introduce other concepts from the geometry on regular surfaces, such as curvature and
geodesics.
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